
Radar hydrological measurements

Best practice

Tomislav Grubeša

Hydrology Instruments – Zagreb pilot project

RSS-2-300W Radar surface velocity meter

- mounted above water with no contact with water
- robust IP68 design, and low power consumption
- advanced digital signal processing for accurate and robust measurements in all conditions
- wide measurement range from 0,02m/s to 15m/s
- high sensitivity enable mounting on distance up to 50m effective distance from radar to water surface

LX80 Radar level meter

- mounted above water with no contact with water
- robust IP68 design, and low power consumption
- advanced digital signal processing for accurate and robust measurements in all conditions
- level measurement up to 35m with ±3mm accuracy
- maximal distance to water surface up to 35m

RSS-2-300WL

Radar surface velocity and level meter

- mounted above water with no contact with water
- robust IP68 design, and low power consumption
- advanced digital signal processing for accurate and robust measurements in all conditions
- wide surface velocity measurement range from 0,02m/s to 15m/s
- level measurement up to 35m with ±3mm accuracy
- maximal distance to water surface up to 35m

SmartObserver Data Logger

- Integrated battery charger with MPPT supports different battery types
- Digitally controlled power management system
- Versatile communication interfaces support various sensors
- Multiple optional communication modules: GPRS, LoRaWAN, WIFI, RF modem, Ethernet, optical...
- Compact, robust, low-power design for field operation
- Pluggable terminal block connectors for easy installation

HydroView Cloud Software

HydroView Cloud Software

Geolux Hydroview Porto	l	•						
🕆 Dashboard	🕢 Vodotok Ludinica - Katoličko Selišće							
 Stations 		2019-11-21						
	M Data 🖲 Info 📱 Notes	2019-11-28						
	Latest Measurement (2019-11-26 16 30 36)							
Hrvatske Vode								
Team Energy	0.008 To 0.38 1.693 13.2							
Trieuha	1 0.0 1 0.0 0 cm 0 cm 0 cm 1 0.0 1 0.0 Charge current: 0.00A Discharge Water Level Surface Velocity Battery Status Battery Status							
VPB								
Administration								
	Profile Diagram - scale not proportional	2019-11-26 15:00:43						
	Discharge							
	m ³ /s 0.04							
	0.03							
	0.02							
	0.00							
	06:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 Nov 22 Nov 25	12:00 00:00 12:00 Nov 26						

- Continuous real time measurements with intervals between readings 30s to 1h
- Data storage on data logger or sending over communication interface to data centre, or combination
- Multiple communication interfaces available for connection to data centre (cloud)

Level and Surface velocity - WHY?

13.6

0.973

0.258

9673

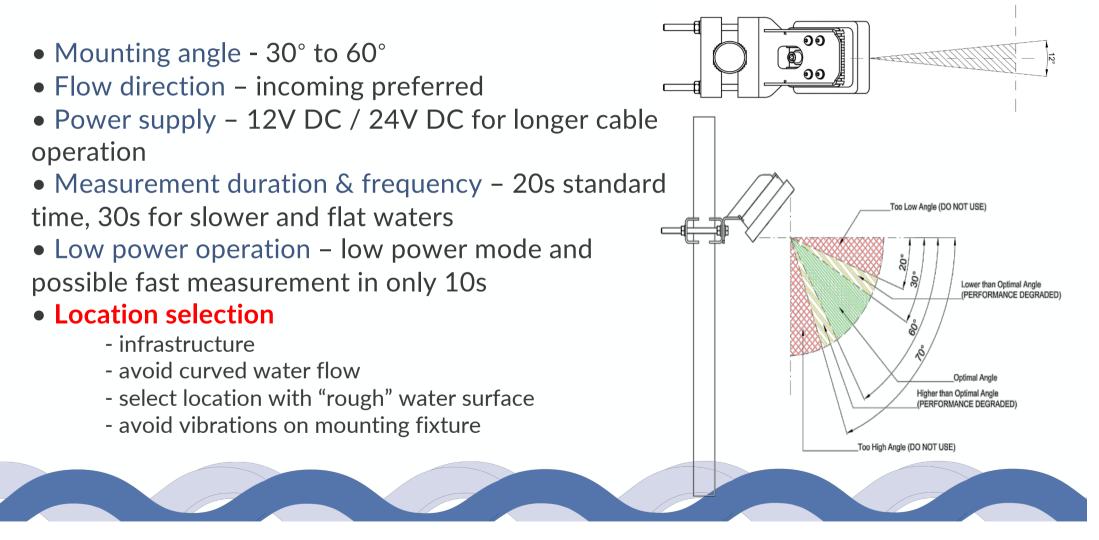
- Locations with possible downstream accumulation of water
- Q-H method based only on level measurement has extreme errors for the case

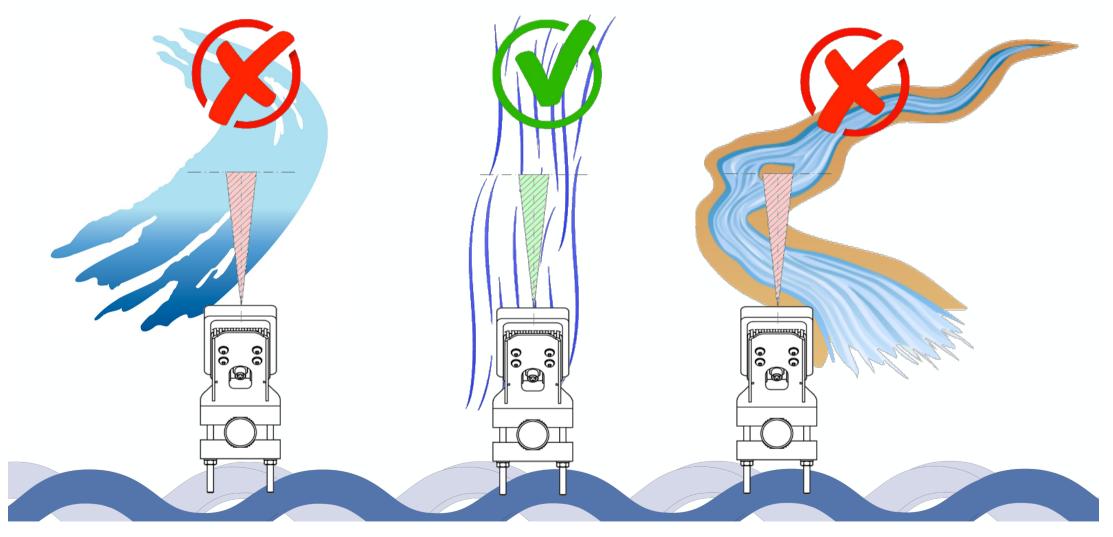
12:00 Nov 19

00:00 Nov 20

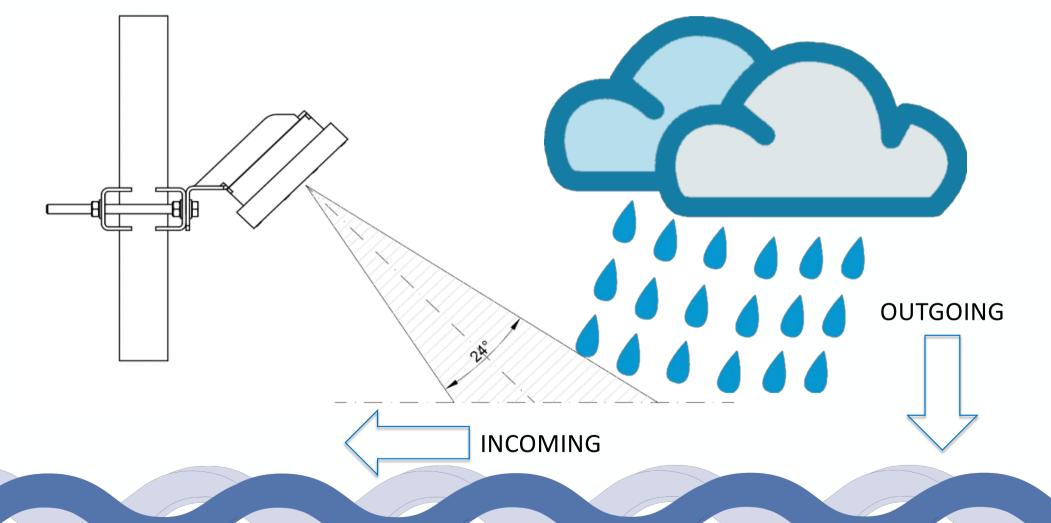
Zoom

20:00


00:00


Nov 19

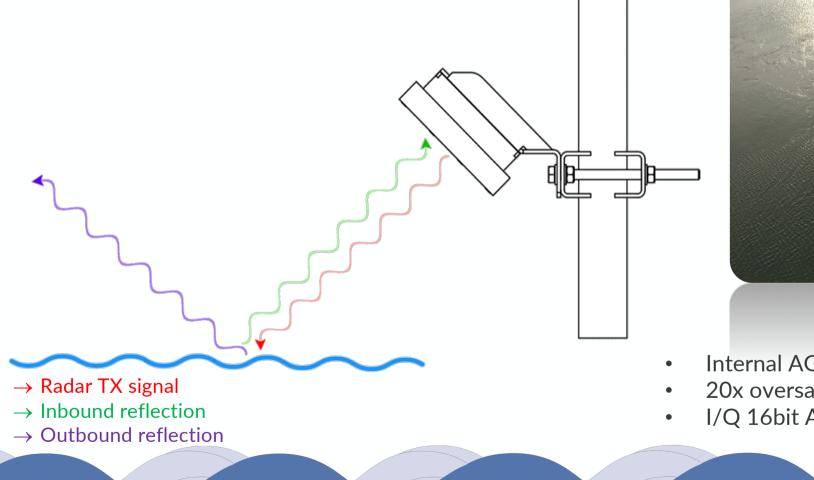
m/s



INSTALLATION & MAINTENANCE

INSTALLATION & MAINTENANCE

RAIN & WIND


 D_2

ANGLE & FLOW DIRECTION

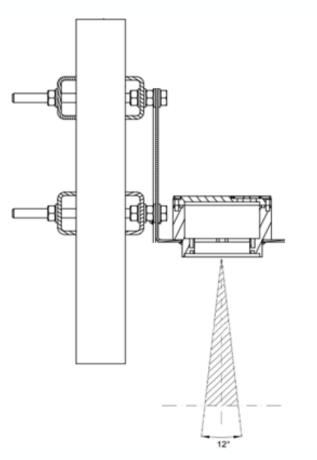
Angle \rightarrow		30°			45°			60°	
Height [H]	L [m]	D ₁ [m]	$D_2[m]$	L [m]	D ₁ [m]	D ₂ [m]	L [m]	D ₁ [m]	D ₂ [m]
0.3m	0.5	0.6	0.2	0.3	0.3	0.2	0.2	0.2	0.1
0.5m	0.9	1.0	0.3	0.5	0.5	0.3	0.3	0.3	0.1
1m	1.7	2.0	0.4	1.0	0.9	0.3	0.6	0.6	0.2
2m	3.5	3.9	0.8	2.0	1.8	0.6	1.2	1.2	0.5
3m	5.2	5.9	1.3	3.0	2.7	0.9	1.7	1.7	0.7
4m	6.9	7.9	17	4.0	3.6	1.2	2.3	2.3	1.0
5m	8.7	9.8	2.1	5.0	4.5	1.5	2.9	2.9	1.2
6m	10.4	11.8	2.5	6.0	5.3	1.8	3.5	3.5	1.5
7m	12.1	13.8	2.9	7.0	6.2	2.1	4.0	4.0	1.7
8m	13.9	15.7	3.4	8.0	7.1	2.4	4.6	4.6	1.9
9m	15.6	17.7	3.8	9.0	8.0	2.7	5.2	5.2	2.2
10m	17.3	19.7	4.2	10.0	8.9	3.0	5.8	5.8	2.4

INTERFERENCE & MULTIPLE RADARS

SIGNAL STRENGTH

- Internal AGC
- 20x oversampling for better SNR
- I/Q 16bit ADC + SDR

ADVANTAGES & MEASURING PRINCIPLE


- FMCW 77 GHz to 81 GHz
- SDR design flexibility, adaptability
- High precision up to ± 1 mm on 35m range
- Low power consumption
- Low maintenance
 - measurements are not affected by sediments, mud or driftwood
 - ideal for hydrological, industrial and wastewater applications
 - possible measurement through non-conductive materials (plastic)
 - robust sensors in IP68-rated enclosure

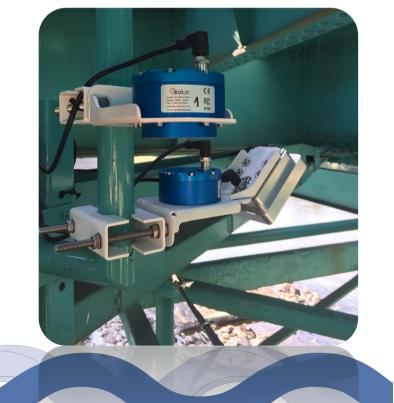
INSTALLATION & MAINTENANCE

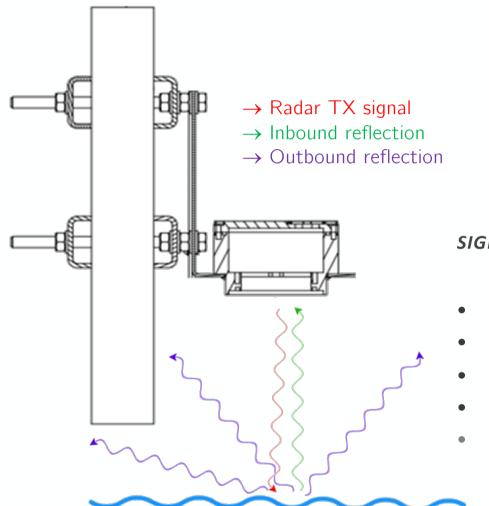
- Mounting above water surface
- Minimal distance 0,1 m (10 cm)
- Maximal distance up to 35m
- Measurement frequency 1 Hz (10 Hz opt.)
- Measurement duration < 5s from power up
- Location selection
 - infrastructure
 - water level fluctuation
 - vegetation
 - vibrations

RAIN & WIND

- FMCW operation low sensitivity to rain
- Minimal wind sensitivity almost no wind impact

MEASUREMENT THROUGH MATERIALS

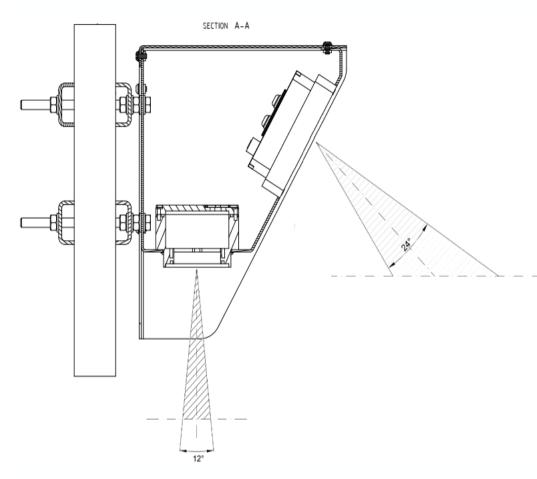

- Microwave signal passing through dielectric (nonconductive) materials
- Materials used in industry and buildings:
 - ABS, PVC, Nylon
 - Teflon, Polycarbonate, Plexiglas
 - Polyamide, Polypropylene


FOGGING & EVAPORTAION

- Fog & evaporation density much lower than water
- Lower signal reflection increased averaging solves problem

INTERFERENCE & MULTIPLE RADARS

- FMCW linear modulation 77 GHz to 81 GHz
- Baseband filter up to 500 kHz
- Required synchronization better than 25 ns
- Very low interference probability



SIGNAL STRENGTH

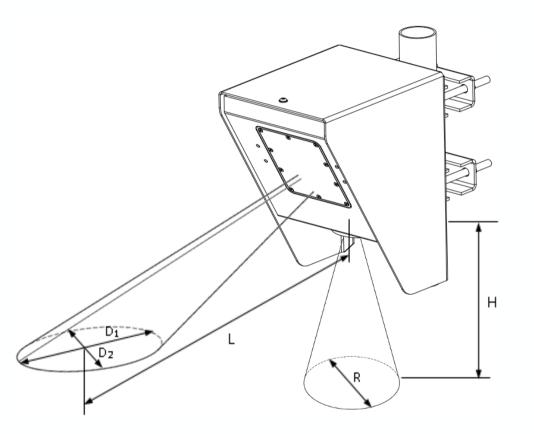
- Internal AGC
- Narrow beam angle
- Advanced SDR signal processing
- Basic classification of materials
- Ice & snow depth measurement (coming soon)

Radar Flow Meter – best practice

COMBINED RSS-2-300W & LX-80

- Mounting above water surface
- Level & Surface Velocity sensor
- Flow calculation internally
- River profile defined with setup

application, internal flow calculation


- Measurements: level, velocity & flow
- Location selection
 - infrastructure
 - all recommendations for each instrument apply

Radar Flow Meter – best practice

COMBINED RSS-2-300W & LX-80

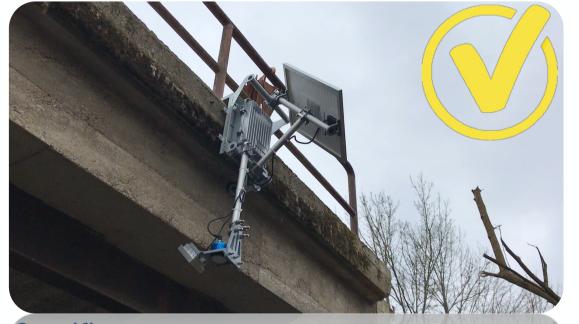
Height [H]	L [m]	D ₁ [m]	D ₂ [m]	R [m]
0.3 m	0.3	0.3	0.2	0.06
0.5 m	0.5	0.5	0.3	0.11
1 m	1.0	0.9	0.3	0.21
2 m	2.0	1.8	0.6	0.42
3 m	3.0	2.7	0.9	0.63
4 m	4.0	3.6	1.2	0.84
5 m	5.0	4.5	1.5	1.05
6 m	6.0	5.3	1.8	1.26
7 m	7.0	6.2	2.1	1.47
8 m	8.0	7.1	2.4	1.68
9 m	9.0	8.0	2.7	1.89
10 m	10.0	8.9	3.0	2.10
11 m	11.0	9.8	3.3	2.31
12 m	12.0	10.7	3.6	2.52
13 m	13.0	11.6	3.9	2.73
14 m	14.0	12.5	4.2	2.94
15 m	15.0	13.4	4.5	3.15

Radar Flow Meter – best practice

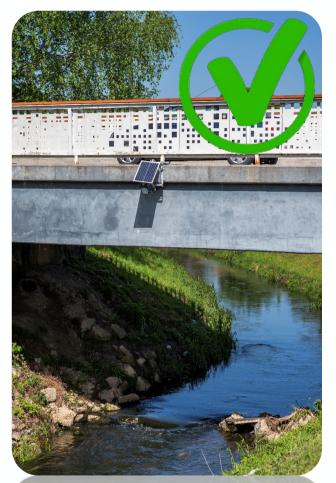
FLOW MEASUREMENT

🔊 Water Flow Radar Configurator Radar View Help Profile View Help Radar Module Info **μ**× Radar Averaging IIR Filter type Setup Channel Profile Filter length 10 Radar Mo **μ**× Surface Velocity Basic Info 2.1.0 Firmware versio Averaging PGA gain Tilt angle 45 1004 mm/s Measured speed Average speed 1002 mm/s Flow direction Incomina Communication 57600 bps Serial baud rate Serial number 🖳 ChannelProfile Protocol NMEA Detection \square Direction filter Both direction Radar X Offset 25.0000 Angle compens True PGA level Radar Y Offset 100.0000 Sensitivity leve Monitoring Side Width 50.0000 Misc 4 Millimeters per second (mm Speed units Rotated Device orientation Load CSV. Selected Point X 33,70000 ÷ Y 80.59000 ÷ Set c-coefficients table Vert. pos. k-coeff Firmware version K Value l evel 0.85 90.3 0.7 • • Remove Save changes

- Profile geometry definition
- K coefficient definition
- Calibration points for K coefficient


Pipe in front of radar, vibrating in the wind ;)

Tributary flow could affect velocity measurement


Curved water flow, lower accuracy and vegetation in front of sensors

Examples

Specific case:

- surface flat as mirror for level < 0,6m
- surface velocity not measured below 0,6m
- flow calculation from V notch equation and level
- above level 0,6m velocity measurement is correct
- above level 0,6m flow is calculated from level and velocity

Straight flow after bridge Surface waviness for smaller flow

Examples

Good location, enough water waviness, no vegetation in from of sensors

Good location, enough water waviness, no vegetation, proper installation

Examples

High distance to water – would prefer smaller distance Surface very flat, but still correct measurements

Examples

Drainage pipe discharge measurement Close distances for sensors Fast flow changes

Shallow water, enough surface roughness, installed on the middle of the river

Geolux success story @ Altium booth on EmbeddedWorld 2017

Thank You!

Geolux success story presented by European Commission in 2018

Geolux selected among most innovative companies in Croatia by Croatian SME agency HAMAG-BICRO